Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Chemosphere ; 351: 141239, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272134

RESUMO

Mercury (Hg) and vitamin A (VitA) are two environmental factors with potential health impacts, especially during pregnancy and early childhood. Fish and seafood may present elevated levels of methylmercury (MeHg), the major Hg derivative, and VitA. This study aimed to evaluate the transgenerational effects of exposure to MeHg and/or VitA on epigenetic and toxicological parameters in a Wistar rat model. Our findings revealed persistent toxicological effects in generations F1 and F2 following low/mild doses of MeHg and/or VitA exposure during dams' (F0) gestation and breastfeeding. Toxicological effects observed in F2 included chronic DNA damage, bone marrow toxicity, altered microglial content, reduced neuronal signal, and diminished male longevity. Sex-specific patterns were also observed. Co-exposure to MeHg and VitA showed both synergistic and antagonistic effects. Additionally, the study demonstrated that MeHg and VitA affected histone methylation and caused consistent effects in F2. While MeHg exposure has been associated with transgenerational inheritance effects in other organisms, this study provides the first evidence of transgenerational inheritance of MeHg and VitA-induced toxicological effects in rodents. Although the exact mechanism is not yet fully understood, these findings suggest that MeHg and VitA may perpetuate their impacts across generations. The study highlights the need for remedial policies and interventions to mitigate the potential health problems faced by future generations exposed to MeHg or VitA. Further research is warranted to investigate the transgenerational effects beyond F2 and determine the matrilineal or patrilineal inheritance patterns.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Humanos , Pré-Escolar , Ratos , Animais , Gravidez , Feminino , Masculino , Compostos de Metilmercúrio/toxicidade , Ratos Wistar , Vitamina A , Metilação
2.
Mol Neurobiol ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38225513

RESUMO

Major Depressive Disorder (MDD) is a severe and multifactorial psychiatric condition. Evidence has shown that environmental factors, such as stress, significantly explain MDD pathophysiology. Studies have hypothesized that changes in histone methylation patterns are involved in impaired glutamatergic signaling. Based on this scenario, this study aims to investigate histone 3 involvement in depression susceptibility or resilience in MDD pathophysiology by investigating cellular and molecular parameters related to i) glutamatergic neurotransmission, ii) astrocytic functioning, and iii) neurogenesis. For this, we subjected male Wistar rats to the Chronic Unpredictable Mild Stress (CUMS) model of depression. We propose that by evaluating the sucrose consumption, open field, and object recognition test performance from animals submitted to CUMS, it is possible to predict with high specificity rats with susceptibility to depressive-like phenotype and resilient to the depressive-like phenotype. We also demonstrated, for the first time, that patterns of H3K4me3, H3K9me3, H3K27me3, and H3K36me3 trimethylation are strictly associated with the resilient or susceptible to depressive-like phenotype in a brain-region-specific manner. Additionally, susceptible animals have reduced DCx and GFAP and resilient animals present increase of AQP-4 immunoreactivity. Together, these results provide evidence that H3 trimethylations are related to the development of the resilient or susceptible to depressive-like phenotype, contributing to further advances in the pathophysiology of MDD and the discovery of mechanisms behind resilience.

3.
J Neurochem ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37984072

RESUMO

Treatment with bexarotene, a selective retinoid X receptor (RXR) agonist, significantly improves behavioral dysfunctions in various neurodegenerative animal models. Additionally, it activates neurodevelopmental and plasticity pathways in the brains of adult mice. Our objective was to investigate the impact of RXR activation by bexarotene on adult neural stem cells (aNSC) and their cell lineages. To achieve this, we treated NSCs isolated from the subventricular zone (SVZ) of adult rat brains from the proliferative stage to the differentiated status. The results showed that bexarotene-treated aNSC exhibited increased BrdU incorporation, SOX2+ dividing cell pairs, and cell migration from neurospheres, revealing that the treatment promotes self-renewing proliferation and cell motility in SVZ-aNCS. Furthermore, bexarotene induced a cell fate shift characterized by a significant increase in GFAP+/S100B+ differentiated astrocytes, which uncovers the participation of activated-RXR in astrogenesis. In the neuronal lineage, the fate shift was counteracted by bexarotene-induced enhancement of NeuN+ nuclei together with neurite network outgrowth, indicating that the RXR agonist stimulates SVZ-aNCS neuronal differentiation at later stages. These findings establish new connections between RXR activation, astro- and neurogenesis in the adult brain, and contribute to the development of therapeutic strategies targeting nuclear receptors for neural repair.

4.
Immunol Invest ; 52(7): 796-814, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37665564

RESUMO

Inflammatory bowel diseases (IBD) cause increased inflammatory signalling and oxidative damage. IBDs are correlated with an increased incidence of brain-related disorders suggesting that the gut-brain-axis exerts a pivotal role in IBD. Butyrate is one of the main microbial metabolites in the colon, and it can cross the blood-brain barrier, directly affecting the brain. We induced ulcerative colitis (UC) in mice utilizing dextran sodium sulfate (DSS) in the drinking water for 7 days. Animals were divided into four groups, receiving water or DSS and treated with saline or 0,066 g/kg of Sodium Butyrate for 7 days. We also used an integrative approach, combining bioinformatics functional network and experimental strategies to understand how butyrate may affect UC. Butyrate was able to attenuate colitis severity and intestinal inflammation. Butyrate protected the colon against oxidative damage in UC and protected the prefrontal cortex from neuroinflammation observed in DSS group. Immunocontent of tight junction proteins Claudin-5 and Occludin were reduced in colon of DSS group mice and butyrate was able to restore to control levels. Occludin and Claudin-5 decrease in DSS group indicate that an intestinal barrier disruption may lead to the increased influx of gut-derived molecules, causing neuroinflammation in the prefrontal cortex, observed by increased IBA-1 marker. The probable protection mechanism of butyrate treatment occurs through NRF2 through Nrf2 and HIF-1α activation and consequent activation of catalase and superoxide dismutase. Our data suggest that systemic inflammation associated with intestinal barrier disruption in UC leads to neuroinflammation in the prefrontal cortex, which was atenuated by butyrate.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Animais , Camundongos , Ácido Butírico/uso terapêutico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Doenças Neuroinflamatórias , Claudina-5 , Fator 2 Relacionado a NF-E2 , Ocludina , Córtex Pré-Frontal , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
5.
J Neurochem ; 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37661637

RESUMO

The receptor for advanced glycation end products (RAGE) is a protein of the immunoglobulin superfamily capable of regulating inflammation. Considering the role of this receptor in the initiation and establishment of neuroinflammation, and the limited understanding of the function of RAGE in the maintenance of this condition, this study describes the effects of RAGE inhibition in the brain, through an intranasal treatment with the antagonist FPS-ZM1, in an animal model of chronic neuroinflammation induced by acute intraperitoneal injection of lipopolysaccharide (LPS). Seventy days after LPS administration (2 mg/kg, i.p.), Wistar rats received, intranasally, 1.2 mg of FPS-ZM1 over 14 days. On days 88 and 89, the animals were submitted to the open-field test and were killed on day 90 after the intraperitoneal injection of LPS. Our results indicate that blockade of encephalic RAGE attenuates LPS-induced chronic neuroinflammation in different brain regions. Furthermore, we found that intranasal FPS-ZM1 administration reduced levels of gliosis markers, RAGE ligands, and α-synuclein in the substantia nigra pars compacta. Additionally, the treatment also reversed the increase in S100 calcium-binding protein B (RAGE ligand) in the cerebrospinal fluid and the cognitive-behavioral deficits promoted by LPS-less time spent in the central zone of the open-field arena (more time in the lateral zones), decreased total distance traveled, and increased number of freezing episodes. In summary, our study demonstrates the prominent role of RAGE in the maintenance of a chronic neuroinflammatory state triggered by a single episode of systemic inflammation and also points to possible future RAGE-based therapeutic approaches to treat conditions in which chronic neuroinflammation and increased α-synuclein levels could play a relevant role, such as in Parkinson's disease.

6.
Thromb J ; 21(1): 80, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507773

RESUMO

BACKGROUND: Because severe acute respiratory syndrome coronarivus 2 (SARS-CoV-2) leads to severe conditions and thrombus formation, evaluation of the coagulation markers is important in determining the prognosis and phenotyping of patients with COVID-19. METHODS: In a prospective study that included 213 COVID-19 patients admitted to the intensive care unit (ICU) the levels of antithrombin, C-reactive protein (CRP); factors XI, XII, XIII; prothrombin and D-dimer were measured. Spearman's correlation coefficient was used to assess the pairwise correlations between the biomarkers. Hierarchical and non-hierarchical cluster analysis was performed using the levels of biomarkers to identify patients´ phenotypes. Multivariate binary regression was used to determine the association of the patient´s outcome with clinical variables and biomarker levels. RESULTS: The levels of factors XI and XIII were significantly higher in patients with less severe COVID-19, while factor XIII and antithrombin levels were significantly associated with mortality. These coagulation biomarkers were associated with the in-hospital survival of COVID-19 patients over and above the core clinical factors on admission. Hierarchical cluster analysis showed a cluster between factor XIII and antithrombin, and this hierarchical cluster was extended to CRP in the next step. Furthermore, a non-hierarchical K-means cluster analysis was performed, and two phenotypes were identified based on the CRP and antithrombin levels independently of clinical variables and were associated with mortality. CONCLUSION: Coagulation biomarkers were associated with in-hospital survival of COVID-19 patients. Lower levels of factors XI, XII and XIII and prothrombin were associated with disease severity, while higher levels of both CRP and antithrombin clustered with worse prognosis. These results suggest the role of coagulation abnormalities in the development of COVID-19 and open the perspective of identifying subgroups of patients who would benefit more from interventions focused on regulating coagulation.

7.
J Neurochem ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37381043

RESUMO

The receptor for advanced glycation end products (RAGE) is a transmembrane receptor that belongs to the immunoglobulin superfamily and is extensively associated with chronic inflammation in non-transmissible diseases. As chronic inflammation is consistently present in neurodegenerative diseases, it was largely assumed that RAGE could act as a critical modulator of neuroinflammation in Parkinson's disease (PD), similar to what was reported for Alzheimer's disease (AD), where RAGE is postulated to mediate pro-inflammatory signaling in microglia by binding to amyloid-ß peptide. However, accumulating evidence from studies of RAGE in PD models suggests a less obvious scenario. Here, we review physiological aspects of RAGE and address the current questions about the potential involvement of this receptor in the cellular events that may be critical for the development and progression of PD, exploring possible mechanisms beyond the classical view of the microglial activation/neuroinflammation/neurodegeneration axis that is widely assumed to be the general mechanism of RAGE action in the adult brain.

8.
J Parkinsons Dis ; 13(5): 717-728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37270812

RESUMO

Oligomerization and aggregation of misfolded forms of α-synuclein are believed to be key molecular mechanisms in Parkinson's disease (PD) and other synucleinopathies, so extensive research has attempted to understand these processes. Among diverse post-translational modifications that impact α-synuclein aggregation, glycation may take place at several lysine sites and modify α-synuclein oligomerization, toxicity, and clearance. The receptor for advanced glycation end products (RAGE) is considered a key regulator of chronic neuroinflammation through microglial activation in response to advanced glycation end products, such as carboxy-ethyl-lysine, or carboxy-methyl-lysine. The presence of RAGE in the midbrain of PD patients has been reported in the last decades and this receptor was proposed to have a role in sustaining PD neuroinflammation. However, different PD animal models demonstrated that RAGE is preferentially expressed in neurons and astrocytes, while recent evidence demonstrated that fibrillar, non-glycated α-synuclein binds to RAGE. Here, we summarize the available data on α-synuclein glycation and RAGE in the context of PD, and discuss about the questions yet to be answered that may increase our understanding of the molecular bases of PD and synucleinopathies.


Assuntos
Doença de Parkinson , Sinucleinopatias , Animais , alfa-Sinucleína/metabolismo , Lisina , Reação de Maillard , Doenças Neuroinflamatórias , Doença de Parkinson/metabolismo , Receptor para Produtos Finais de Glicação Avançada
9.
Mol Psychiatry ; 28(2): 871-882, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36280751

RESUMO

Molecular and functional abnormalities of astrocytes have been implicated in the etiology and pathogenesis of schizophrenia (SCZ). In this study, we examined the proteome, inflammatory responses, and secretome effects on vascularization of human induced pluripotent stem cell (hiPSC)-derived astrocytes from patients with SCZ. Proteomic analysis revealed alterations in proteins related to immune function and vascularization. Reduced expression of the nuclear factor kappa B (NF-κB) p65 subunit was observed in these astrocytes, with no incremental secretion of cytokines after tumor necrosis factor alpha (TNF-α) stimulation. Among inflammatory cytokines, secretion of interleukin (IL)-8 was particularly elevated in SCZ-patient-derived-astrocyte-conditioned medium (ASCZCM). In a chicken chorioallantoic membrane (CAM) assay, ASCZCM reduced the diameter of newly grown vessels. This effect could be mimicked with exogenous addition of IL-8. Taken together, our results suggest that SCZ astrocytes are immunologically dysfunctional and may consequently affect vascularization through secreted factors.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Astrócitos/metabolismo , Proteômica , Esquizofrenia/metabolismo , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fenótipo
10.
Metab Brain Dis ; 38(1): 123-135, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922735

RESUMO

Nanotechnology is an emerging and expanding technology worldwide. The manipulation of materials on a nanometric scale generates new products with unique properties called nanomaterials. Due to its significant expansion, nanotechnology has been applied in several fields of study, including developing materials for biomedical applications, i.e., nanomedicine. The use of nanomaterials, including nanoparticles, in nanomedicine, is promising and has been associated with pharmacokinetics, bioavailability, and therapeutic advantages. In this regard, it is worth mentioning the Gold Nanoparticles (AuNPs). AuNPs' biomedical application is extensively investigated due to their high biocompatibility, simple preparation, catalytic, and redox properties. Experimental studies have pointed out critical therapeutic actions related to AuNPs in different pathophysiological contexts, mainly due to their anti-inflammatory and antioxidant effects. Thus, in this review, we will discuss the main experimental findings related to the therapeutic properties of AuNPs in metabolic, neurodegenerative diseases, and ultimately brain dysfunctions related to metabolic diseases.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Nanomedicina , Encéfalo
11.
Nutr Neurosci ; 25(5): 1026-1040, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33078695

RESUMO

Obesity is a health problem that has been associated with neuroinflammation, decreased cognitive functions and development of neurodegenerative diseases. Parkinson's disease (PD) is a chronic neurodegenerative condition characterized by motor and non-motor abnormalities, increased brain inflammation, α-synuclein protein aggregation and dopaminergic neuron loss that is associated with decreased levels of tyrosine hydroxylase (TH) in the brain. Diet-induced obesity is a global epidemic and its role as a risk factor for PD is not clear. Herein, we showed that 25 weeks on a high-fat diet (HFD) promotes significant alterations in the nigrostriatal axis of Wistar rats. Obesity induced by HFD exposure caused a reduction in TH levels and increased TH phosphorylation at serine 40 in the ventral tegmental area. These effects were associated with insulin resistance, increased tumor necrosis factor-α levels, oxidative stress, astrogliosis and microglia activation. No difference was detected in the levels of α-synuclein. Obesity also induced impairment of locomotor activity, total mobility and anxiety-related behaviors that were identified in the open-field and light/dark tasks. There were no changes in motor coordination or memory. Together, these data suggest that the reduction of TH levels in the nigrostriatal axis occurs through an α-synuclein-independent pathway and can be attributed to brain inflammation, oxidative/nitrosative stress and metabolic disorders induced by obesity.


Assuntos
Encefalite , Doença de Parkinson , Animais , Encéfalo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Encefalite/metabolismo , Doenças Neuroinflamatórias , Obesidade/etiologia , Obesidade/metabolismo , Estresse Oxidativo , Doença de Parkinson/metabolismo , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo
12.
Neurochem Res ; 47(2): 409-421, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34557995

RESUMO

Neuroblastoma is the most common extracranial solid tumour in childhood, originated from cells of the neural crest during the development of the Sympathetic Nervous System. Retinoids are vitamin-A derived differentiating agents utilised to avoid disease resurgence in high-risk neuroblastoma treatment. Several studies indicate that hypoxia-a common feature of the tumoural environment-is a key player in cell differentiation and proliferation. Hypoxia leads to the accumulation of the hypoxia-inducible factor-1α (HIF-1α). This work aims to investigate the effects of the selective inhibition of HIF-1α on the differentiation induced by retinoic acid in human neuroblastoma cells from the SH-SY5Y lineage to clarify its role in cell differentiation. Our results indicate that HIF-1α inhibition impairs RA-induced differentiation by reducing neuron-like phenotype and diminished immunolabeling and expression of differentiation markers. HIF1A is involved in Retinoic Acid (RA) induced differentiation in SH-SY5Y neuroblastoma cells. siRNA HIF1A gene silencing leads to a weaker response to RA, demonstrated by changes in the neuro-like phenotype and diminished expression of differentiation markers.


Assuntos
Neuroblastoma , Tretinoína , Diferenciação Celular , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neuritos , Neuroblastoma/metabolismo , Tretinoína/farmacologia
13.
Free Radic Biol Med ; 177: 58-71, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34673143

RESUMO

Activating mutations in the KEAP1/NRF2 pathway characterize a subset of non-small cell lung cancer (NSCLC) associated with chemoresistance and poor prognosis. We herein evaluated the relationship between 64 oxidative stress-related genes and overall survival data from 35 lung cancer datasets. Thioredoxin reductase-1 (TXNRD1) stood out as the most significant predictor of poor outcome. In a cohort of NSCLC patients, high TXNRD1 protein levels correlated with shorter disease-free survival and distal metastasis-free survival post-surgery, including a subset of individuals treated with platinum-based adjuvant chemotherapy. Bioinformatics analysis revealed that NSCLC tumors harboring genetic alterations in the NRF2 pathway (KEAP1, NFE2L2 and CUL3 mutations, and NFE2L2 amplification) overexpress TXNRD1, while no association with EGFR, KRAS, TP53 and PIK3CA mutations was found. In addition, nuclear accumulation of NRF2 overlapped with upregulated TXNRD1 protein in NSCLC tumors. Functional cell assays and gene dependency analysis revealed that NRF2, but not TXNRD1, has a pivotal role in KEAP1 mutant cells' survival. KEAP1 mutants overexpress TXNRD1 and are less susceptible to the cytotoxic effects of the TXNRD1 inhibitor auranofin when compared to wild-type cell lines. Inhibition of NRF2 with siRNA or ML-385, and glutathione depletion with buthionine-sulfoximine, sensitized KEAP1 mutant A549 cells to auranofin. NRF2 knockdown and GSH depletion also augmented cisplatin cytotoxicity in A549 cells, whereas auranofin had no effect. In summary, these findings suggest that TXNRD1 is not a key determinant of malignant phenotypes in KEAP1 mutant cells, although this protein can be a surrogate marker of NRF2 pathway activation, predicting tumor recurrence and possibly other aggressive phenotypes associated with NRF2 hyperactivation in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Tiorredoxina Redutase 1 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Culina , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Recidiva Local de Neoplasia/genética , Transdução de Sinais , Tiorredoxina Redutase 1/genética , Tiorredoxina Redutase 1/metabolismo
14.
Brain Behav Immun Health ; 14: 100253, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34589762

RESUMO

HSP70 is one of the main molecular chaperones involved in the cellular stress response. Besides its chaperone action, HSP70 also modulates the immune response. Increased susceptibility to toxic insults in intra- and extracellular environments has been associated with insufficient amounts of inducible HSP70 in adult neurons. On the other hand, exogenous HSP70 administration has demonstrated neuroprotective effects in experimental models of age-related disorders. In this regard, this study investigated the effects of exogenous HSP70 in an animal model of dopaminergic denervation of the nigrostriatal axis. After unilateral intrastriatal injection with 6-hydroxydopamine (6-OHDA), the animals received purified recombinant HSP70 through intranasal administration (2 µg/rat/day) for 15 days. Our results indicate a neuroprotective effect of intranasal HSP70 against dopaminergic denervation induced by 6-OHDA. Exogenous HSP70 improved motor impairment and reduced the loss of dopaminergic neurons caused by 6-OHDA. Moreover, HSP70 modulated neuroinflammatory response in the substantia nigra, an important event in Parkinson's disease pathogenesis. Specifically, HSP70 treatment reduced microglial activation and astrogliosis induced by 6-OHDA, as well as IL-1ß mRNA expression in this region. Also, recombinant HSP70 increased the protein content of HSP70 in the substantia nigra of rats that received 6-OHDA. These data suggest the neuroprotection of HSP70 against dopaminergic neurons damage after cellular stress. Finally, our results indicate that HSP70 neuroprotective action against 6-OHDA toxicity is related to inflammatory response modulation.

15.
Biomed Pharmacother ; 142: 111993, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34364045

RESUMO

Superoxide dismutase 2 (SOD2) is an antioxidant enzyme that appears phylogenetically conserved. However, functional Sod2 polymorphisms have been studied, and the specific polymorphisms are related to activity alterations of the SOD2 enzyme. An example of a polymorphism of SOD2 is Val16Ala (rs4880), which has been identified in exon 2 of the human Sod2 gene. This polymorphism is recognized as a single nucleotide polymorphism (SNP) and alters the conformation of SOD2. Additionally, recent studies have shown that the Ala16 Val polymorphism in Sod2 can be related to different pathological diseases. In these terms, the objective of the present study was to evaluate whether the polymorphism of SOD2 in Val16Ala (rs4880) influences the motility and vigor of X- and Y-bearing sperm at different pH values promoting sperm selection. We found that polymorphism rs4880 at normal pH conditions can result in alterations in the activity of superoxide dismutase in the sperm through different assay analyses. Moreover, compelling modulation evidence indicates that this effect could also mediate seminal plasma redox alterations and consequently can play an important role in sperm physiology, fertilization, and postfertilization.


Assuntos
Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Superóxido Dismutase/genética , Humanos , Concentração de Íons de Hidrogênio , Masculino , Oxirredução , Polimorfismo de Nucleotídeo Único
16.
J Biol Chem ; 297(2): 100979, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34303703

RESUMO

Schistosomiasis, a neglected tropical disease caused by trematodes of the Schistosoma genus, affects over 250 million people around the world. This disease has been associated with learning and memory deficits in children, whereas reduced attention levels, impaired work capacity, and cognitive deficits have been observed in adults. Strongly correlated with poverty and lack of basic sanitary conditions, this chronic endemic infection is common in Africa, South America, and parts of Asia and contributes to inhibition of social development and low quality of life in affected areas. Nonetheless, studies on the mechanisms involved in the neurological impairment caused by schistosomiasis are scarce. Here, we used a murine model of infection with Schistosoma mansoni in which parasites do not invade the central nervous system to evaluate the consequences of systemic infection on neurologic function. We observed that systemic infection with S. mansoni led to astrocyte and microglia activation, expression of oxidative stress-induced transcription factor Nrf2, oxidative damage, Tau phosphorylation, and amyloid-ß peptide accumulation in the prefrontal cortex of infected animals. We also found impairment in spatial learning and memory as evaluated by the Morris water maze task. Administration of anthelmintic (praziquantel) and antioxidant (N-acetylcysteine plus deferoxamine) treatments was effective in inhibiting most of these phenotypes, and the combination of both treatments had a synergistic effect to prevent such changes. These data demonstrate new perspectives toward the understanding of the pathology and possible therapeutic approaches to counteract long-term effects of systemic schistosomiasis on brain function.


Assuntos
Astrócitos/patologia , Microglia/patologia , Doenças Neurodegenerativas/patologia , Schistosoma mansoni/isolamento & purificação , Esquistossomose mansoni/complicações , Acetilcisteína/farmacologia , Animais , Anti-Helmínticos/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Desferroxamina/farmacologia , Modelos Animais de Doenças , Sequestradores de Radicais Livres/farmacologia , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/etiologia , Praziquantel/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/parasitologia , Esquistossomose mansoni/patologia , Sideróforos/farmacologia
17.
J Pain ; 22(8): 996-1013, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33774154

RESUMO

Chemotherapy-Induced Peripheral Neuropathy (CIPN) is a common, difficult-to-treat, and dose-limiting side effect associated with Oxaliplatin (OXA) treatment. In this study, we evaluated the effect of three antioxidants - namely N-acetylcysteine, α-lipoic acid and vitamin E - upon nociceptive parameters and antitumor efficacy of OXA in a tumor-bearing Swiss mice model. Oral treatment with antioxidants inhibited both mechanical and cold allodynia when concomitantly administrated with OXA (preventive protocol), as well as in animals with previously established CIPN (therapeutic protocol). OXA increased Reactive Oxygen Species (ROS) production and lipoperoxidation, and augmented the content of pro-inflammatory cytokines (IL-1ß and TNF-α) and expression of the astrocytic marker Gfap mRNA in the spinal cord. Antioxidants decreased ROS production and lipoperoxidation, and abolished neuroinflammation in OXA-treated animals. Toll-like receptor 4 (Tlr4) and inflammasome enzyme caspase-1/11 knockout mice treated with OXA showed reduced levels of pro-inflammatory cytokines (but not oxidative stress) in the spinal cord, which were associated with resistance to OXA-induced mechanical allodynia. Lastly, antioxidants affected neither antitumor activity nor hematological toxicity of OXA in vivo. The herein presented results are provocative for further evaluation of antioxidants in clinical management of chemotherapy-induced peripheral neuropathy. PERSPECTIVE: This study reports preventive and therapeutic efficacy of orally administrated antioxidants (N-acetylcysteine, α-lipoic-acid and Vitamin-E) in alleviating oxaliplatin-induced peripheral neuropathy in tumor-bearing mice. Antioxidants' anti-nociceptive effects are associated with inhibition of ROS-dependent neuroinflammation, and occur at no detriment of OXA antitumor activity, therefore indicating a translational potential of these compounds.


Assuntos
Antineoplásicos/efeitos adversos , Antioxidantes/farmacologia , Hiperalgesia , Neoplasias/tratamento farmacológico , Doenças Neuroinflamatórias , Oxaliplatina/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico , Medula Espinal , Animais , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/metabolismo , Receptor 4 Toll-Like
18.
Cancer Lett ; 502: 44-57, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33429006

RESUMO

Obesity is a major risk factor for breast cancer, especially in post-menopausal women. In the breast tissue of obese women, cyclooxygenase-2 (COX-2)-dependent prostaglandin E2 (PGE2) production has been correlated with inflammation and local estrogen biosynthesis via aromatase. Using a mouse model of 7,12-dimethylbenz[a]anthracene/medroxyprogesterone-acetate (DMBA/MPA)-induced carcinogenesis, we demonstrated that an obesogenic diet promotes mammary tissue inflammation and local estrogen production, and accelerates mammary tumor formation in a COX-2-dependent manner. High-sugar/fat (HSF) diet augmented the levels of the pro-inflammatory mediators MCP-1, IL-6, COX-2, and PGE2 in mammary tissue, and this was accompanied by crown-like structures of breast (CLS-B) formation and aromatase/estrogen upregulation. Treatment with a COX-2 selective inhibitor, etoricoxib, decreased PGE2, IL-6, MCP-1, and CLS-B formation as well as reduced aromatase protein and estrogen levels in the mammary tissue of mice fed a HSF diet. Etoricoxib-treated mice showed increased latency and decreased incidence of mammary tumors, which resulted in prolonged animal survival when compared to HSF diet alone. Inhibition of tumor angiogenesis also seemed to account for the prolonged survival of COX-2 inhibitor-treated animals. In conclusion, obesogenic diet-induced COX-2 is sufficient to trigger inflammation, local estrogen biosynthesis, and mammary tumorigenesis.


Assuntos
Neoplasias da Mama/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dinoprostona/biossíntese , Açúcares/efeitos adversos , Regulação para Cima , 9,10-Dimetil-1,2-benzantraceno/efeitos adversos , Animais , Aromatase/metabolismo , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Etoricoxib/administração & dosagem , Etoricoxib/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-6/metabolismo , Células MCF-7 , Acetato de Medroxiprogesterona/efeitos adversos , Camundongos
19.
Biomed Pharmacother ; 128: 110277, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32480222

RESUMO

The antioxidant and anti-inflammatory properties of Malpighia emarginata D.C (acerola) and Camellia sinensis L. (green tea) have been studied, particularly as an alternative in medicinal approach for different physio pathological conditions. Here we develop an powder blend formulated with both Malpighia emarginata D.C and Camellia sinensis L. which have in the composition higher content of ascorbic acid and epigallatocathechin-3-gallate respectively. Using different conditions for microencapsulation of biocompounds, we performed the powder production through spray-drying process. After, we evaluate the antioxidant and anti-inflammatory properties of blends formulated with Malpighia emarginata D.C and Camellia sinensis L. in an in vitro model of inflammation, using LPS-stimulated RAW-264.7 macrophage cell line. We observed that co-treatment with blends was able to modulate the redox parameters in cells during the in vitro inflammatory response. Moreover, the co-treatment with blends were able to modulate inflammatory response by altering the secretion of cytokines IL-1ß, IL-6, IL-10, and TNF-α. Taken together, our results demonstrate for the first time the synergistic effects antioxidant and anti-inflammatory of Malpighia emarginata D.C and Camellia sinensis L. These results warrant further use of the blend powder for use in the products to heath beneficial, principally in terms of prevention of chronic diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Camellia sinensis , Inflamação/prevenção & controle , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Malpighiaceae , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Ácido Ascórbico/farmacologia , Camellia sinensis/química , Catequina/análogos & derivados , Catequina/farmacologia , Citocinas/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Malpighiaceae/química , Camundongos , Extratos Vegetais/isolamento & purificação , Células RAW 264.7
20.
Glia ; 68(7): 1396-1409, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32003513

RESUMO

Astrogliosis comprises a variety of changes in astrocytes that occur in a context-specific manner, triggered by temporally diverse signaling events that vary with the nature and severity of brain insults. However, most mechanisms underlying astrogliosis were described using animals, which fail to reproduce some aspects of human astroglial signaling. Here, we report an in vitro model to study astrogliosis using human-induced pluripotent stem cells (iPSC)-derived astrocytes which replicate temporally intertwined aspects of reactive astrocytes in vivo. We analyzed the time course of astrogliosis by measuring nuclear translocation of NF-kB, production of cytokines, changes in morphology and function of iPSC-derived astrocytes exposed to TNF-α. We observed NF-kB p65 subunit nuclear translocation and increased gene expression of IL-1ß, IL-6, and TNF-α in the first hours following TNF-α stimulation. After 24 hr, conditioned media from iPSC-derived astrocytes exposed to TNF-α exhibited increased secretion of inflammation-related cytokines. After 5 days, TNF-α-stimulated cells presented a typical phenotype of astrogliosis such as increased immunolabeling of Vimentin and GFAP and nuclei with elongated shape and shrinkage. Moreover, ~50% decrease in aspartate uptake was observed during the time course of astrogliosis with no evident cell damage, suggesting astroglial dysfunction. Together, our results indicate that human iPSC-derived astrocytes reproduce canonical events associated with astrogliosis in a time dependent fashion. The approach described here may contribute to a better understanding of mechanisms governing human astrogliosis with potential applicability as a platform to uncover novel biomarkers and drug targets to prevent or mitigate astrogliosis associated with human brain disorders.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encefalopatias/metabolismo , Citocinas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Filamentos Intermediários/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...